skip to main content


Search for: All records

Creators/Authors contains: "Paradis, Nicholas"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Interactions between ionic liquids and biomolecules are of great interest due to the intrinsic properties of ionic liquids and the flexibility allowed by mixing and matching cations and anions to create unique ionic liquids. A number of ionic liquid–biomolecule studies have focused on interactions with proteins, including industrially relevant enzymes. One of these, laccase from Trametes versicolor, is a naturally derived enzyme used in the breakdown of phenolic compounds in a wide variety of industries, especially useful in breakdown of lignocellulosic materials. Here, a combination of experiments and molecular dynamics (MD) simulations was used to investigate the interactions of ionic liquids with laccase. Enzyme kinetics assays indicated that ionic liquids composed of tetramethylguanidine (TMG) and either serine or threonine caused significant reduction in enzymatic activity, while kinetics was not impacted by TMG-Asp or TMG-Glu ionic liquids. Similarly, intrinsic fluorescence of laccase in the presence of TMG-Ser and TMG-Thr exhibited a shift in spectral properties consistent with structural destabilization, but again TMG-Asp and TMG-Glu had no impact. MD simulations of laccase and ABTS with/without TMG-Ser ionic liquid provided insight into the deactivation mechanism of laccase. The simulations indicated that TMG-Ser disrupts laccase’s electron transfer mechanism. 
    more » « less
  2. null (Ed.)
  3. null (Ed.)
    D089-0563 is a highly promising anti-cancer compound that selectively binds the transcription-silencing G-quadruplex element (Pu27) at the promoter region of the human c-MYC oncogene; however, its binding mechanism remains elusive. The structure of Pu27 is not available due to its polymorphism, but the G-quadruplex structures of its two shorter derivatives in complex with a ligand (Pu24/Phen-DC3 and Pu22/DC-34) are available and show significant structural variance as well as different ligand binding patterns in the 3′ region. Because D089-0563 shares the same scaffold as DC34 while having a significantly different scaffold from Phen-DC3, we picked Pu24 instead of Pu22 for this study in order to gain additional ligand binding insight. Using free ligand molecular dynamics binding simulations (33 μs), we probed the binding of D089-0563 to Pu24. Our clustering analysis identified three binding modes (top, side, and bottom) and subsequent MMPBSA binding energy analysis identified the top mode as the most thermodynamically stable. Our Markov State Model (MSM) analysis revealed that there are three parallel pathways for D089-0563 to the top mode from unbound state and that the ligand binding follows the conformational selection mechanism. Combining our predicted complex structures with the two experimental structures, it is evident that structural differences in the 3′ region between Pu24 and Pu22 lead to different binding behaviors despite having similar ligands; this also explains the different promoter activity caused by the two G-quadruplex sequences observed in a recent synthetic biology study. Based on interaction insights, 625 D089-0563 derivatives were designed and docked; 59 of these showed slightly improved docking scores. 
    more » « less
  4. null (Ed.)
    In the past decade, innovative protein therapies and bio-similar industries have grown rapidly. Additionally, ionic liquids (ILs) have been an area of great interest and rapid development in industrial processes over a similar timeline. Therefore, there is a pressing need to understand the structure and function of proteins in novel environments with ILs. Understanding the short-term and long-term stability of protein molecules in IL formulations will be key to using ILs for protein technologies. Similarly, ILs have been investigated as part of therapeutic delivery systems and implicated in numerous studies in which ILs impact the activity and/or stability of protein molecules. Notably, many of the proteins used in industrial applications are involved in redox chemistry, and thus often contain metal ions or metal-associated cofactors. In this review article, we focus on the current understanding of protein structure-function relationship in the presence of ILs, specifically focusing on the effect of ILs on metal containing proteins. 
    more » « less